Remarks on General Principally Injective Rings

Hasan Ögünmez

Afyon Kocatepe University, Faculty of Arts and Sciences, Department of Mathematics, Ahmet Necdet Sezer Campus, Afyonkarahisar, Turkey

Received (Geliş Tarihi): 01.07.2011, Accepted (Kabul Tarihi): 29.03.2012
Yazısalardan Sorumlu Yazar (Corresponding author): hogueunmez@aku.edu.tr
+90 272 228 13 12 / 256 +90 272 228 12 35

ABSTRACT
In [3], Chen and Li proved that every left CS and left p-injective ring is a QF-ring. In this study, we show that a right Noetherian, left CS and left GP-injective ring is right Artinian. We also prove that, if every singular simple right \(R \)-module is GP-injective, then \(J(R) \cap Z_r = 0 \). This gives a partially answer to a question of Ming [5].

2000 Mathematics Subject Classification: 16L30, 16L60, 16P20

Key Words: CS-rings, GP-injective rings

ÖZET

Anahtar Kelimeler: CS-halkalar, GP-injektif halkalar, Noetherian, Artinian

1. INTRODUCTION
Throughout this paper, we assume that \(R \) is an associative ring (not necessarily commutative) with unity and \(M_R \) (resp., \(R/M \)) is unital right (resp. left) \(R \)-module. The notions, “\(\leq \)” will denote a submodule “\(\leq e \)” an essential submodule and \(l_R(X) \) (resp., \(r_R(X) \)) the left (resp. right) annihilator of a subset \(X \) of \(R \), respectively. We also write “\(J \)”, “\(Z_R \)” (“\(Z_l \)”), and \(S_R \) (“\(S_r \)”) for the Jacobson radical, the right (left) singular ideal and the right (left) socle of \(R \), respectively. The texts by Anderson and Fuller [1] and [6] are the general
A module M is called principally injective (p-injective for short) if every R-homomorphism from a principal right ideal aR to M extends to one from R to M, i.e., is given by left multiplication by an element of M. This is equivalent to saying that $l_{M}r_{R}(a) = Ma$ for all $a \in R$. R is called right P-injective ring, if R_{R} is a p-injective module. A ring R is said to be general right principally injective (briefly right GP-injective) if, for any $0 \neq a \in R$, there exists a positive integer $n = n(a)$ such that $a^{n} \neq 0$ and any right R-homomorphism from $a^{n}R$ to R extends to an endomorphism of R (see [10]).

A module M is called extending (or CS) if, for all $N \leq M$, there exists a direct summand $N' \leq_{d} M$ such that $N \leq c_{e} N'$ and a ring R is called right (resp., left) CS if R_{R} (resp., $_{R}R$) is CS (see [6]). Examples of extending modules are injective modules, quasi-injective modules and uniform modules. The notions of p-injective rings, CS rings and GP-injective rings have been the focus of a number of research papers.

A right R-module M_{R} is called mininjective if, for each simple right ideal K of R, every R-morphism $\alpha : K \rightarrow M$ extends to R; equivalently if $\alpha : m$ is left multiplication by some element m of M. Hence the ring R is right mininjective if R_{R} is mininjective [8]. By [8, Lemma 1.1], R is right mininjective if and only if, for $a \in R$, $l_{R}(a) = Ra$ where Ra is simple right ideal of R. A ring R is called right simple injective if for some R-homomorphism γ with $\gamma(I)$ simple extends to R. So we have the following strict hierarchy.

\{right self injective\} \subset \{right simple injective\} \subset \{right mininjective\}

A ring R is called a right generalized V-ring if every singular simple right R-module is injective.

In this paper, by using a method due to Chen and Li [3], we obtain that if R is a right Noetherian, left CS and left GP-injective ring, then R is right Artinian. We also prove that a right CF, right GP-injective and semi regular ring is a QF-ring.

2. RESULTS

Lemma 2.1. Let R be a right Noetherian, left GP-injective and left finite dimensional ring. Then R is right Artinian.

Proof. By [2, Theorem 4.6], every left GP-injective and left finite dimensional ring is semilocal. Note that in [2, Theorem 4.6], the reader is referred to [7, Theorem 3.3]. Now, because R is right Noetherian, there exists $n \geq 1$ such that $l(J^n) = l(J^{n+1}) = \cdots$. We claim that J is nilpotent. If not, there exists a maximal element $r(a)$ in nonempty set $\{r(b) : bj^n \neq 0\}$. Assume that $J^{n+1} \neq 0$ and we get a contradiction. Since $l(J^n) = l(J^{2n})$, we have $J^{2n} \neq 0$. This implies that there exists an element $x \in J^n$ such that $axJ^n \neq 0$. Because of GP-injectivity of R, $l(J) \leq e \leq R$ and so $l(J^n) \leq e \leq R$ since $l(J) \leq l(J^n)$. Therefore there exists an element $y \in J^n$ such that $0 \neq yax \in l(J^n)$, and so $r(a) \leq r(ya)$. This is a contradiction of the maximality of $r(a)$. Hence J is nilpotent by Hopkin's Theorem [1], so R is a right Artinian ring.

In [3], Chen and Li proved that every right Noetherian, left CS and left p-injective ring is QF.

Theorem 2.2. If R is a right Noetherian, left CS and left GP-injective ring, then R is right Artinian.

Proof. Let R be a right Noetherian, left CS and left GP-injective ring. By [3, Theorem 2.11], R is a left finite dimensional ring. Hence R is a right Artinian ring by Lemma 2.1.

Hence one may ask the following question.

Question: Let R be a right Noetherian, left CS and left GP-injective ring. Is R left Artinian?

If the answer is true, then R is a QF-ring by [9, Theorem 3.4] because Soc (Re) is simple for any local idempotent $e \in R$.

Recall that a ring R said to be right Kasch ring if every simple right R-module embeds in R and R said to be a semiregular ring if R/J is von Neumann regular and idempotents can be lifted modulo J.

References for notions of rings and modules not defined in this work.
Theorem 2.3. [9, Theorem 3.31] Suppose that R is a semilocal, left and right mininjective ring with ACC on right annihilators in which $S_r \leq R_R$. Then R is a QF-ring.

Theorem 2.4. Let R be a left GP-injective, left CS-ring with $S_i \leq R_R$ and right mininjective ring with ACC on right annihilators in which $S_r \leq R_R$. Then R is QF-ring.

Proof. Let e be any primitive idempotent of R. It is easy to see that Re is uniform. This follows that $\text{Soc}(Re)$ is simple and so R is left mininjective ring by [8]. Since R is a left GP-injective ring, we have $J(R) = Z(R_R)$. By [9, Lemma 8.1], R is a right Kasch ring and so R is semiperfect by [9, Theorem 4.10]. By [9, Theorem 3.24] and [2, Theorem 2.3], R is a left Kasch ring with $S_r = S_i$. Therefore $S_r \leq R_R$ by [2, Theorem 2.3]. Hence R is a QF-ring by Theorem 2.3.

Remark: A ring R said to be a CF-ring if every cyclic right R-module embeds in R. In [3], they shown that:
1) If R is right CF, semiregular and $J \leq Z_r$, then R is a right Artinian ring.
2) A right CF, semiregular and right p-injective ring is QF.

Lemma 2.5. Let R be a left Kasch and right CF-ring. Then R is a right Kasch, right Artinian (and so right Noetherian) and semilocal ring with $J = Z_R$.

Proof. See [4, Theorem 2.6].

Theorem 2.6. Assume that R is a right CF-ring. Then R is a QF-ring if the following are satisfied:
1) R is semiregular and right GP-injective ring or;
2) R is left Kasch ring or;
3) R is semiregular and right mininjective ring with $S_r \leq R_R$.

Proof. (1) and (3) If R is a right GP-injective and semiregular ring with $S_r \leq R_R$, then $J = Z_R$. By Remark, R is right Artinian. Because of right mininjectivity of R, we have R is a QF-ring by Theorem 2.3. (2) It follows from Lemma 2.5 and Theorem 2.2.

Theorem 2.7. Assume that R is a right CF-ring and right mininjective ring. Then the following are equivalent:
1) R is QF
2) S_i is finitely generated as left R-module
3) R is semisimple

Proof. (1) \Rightarrow (2) Clear.
(2) \Rightarrow (3) By assumption, R is a left p-injective and right Kasch ring, and so $S_i = S_r$. It is enough to show that $J = J(S_i)$ and R/J is semisimple. Let $x \in J(S_i)$. For maximal left ideal I of R and simple left ideal A of R, we consider the isomorphism $f : R/I \rightarrow A$. Clearly, $f(R/I)x = f((R/I)x) = 0$, that is $Ax = 0$. This implies that $(R/I)x = 0$ and so $x \in I$. The other side is obvious. Hence $J = J(S_i)$. Now, since S_i is finitely generated as left R-module, we write $S_i = Rx_1 \oplus Rx_2 \oplus \cdots \oplus Rx_n$, where each Rx_i is a simple left ideal of R. Note that $J = r(S_i) = \bigcap_{i=1}^n r(x_i)$ and $g : R/J = R/r(S_i) = R/\bigcap_{i=1}^n r(x_i) \rightarrow R/\bigoplus_{i=1}^n r(x_i)$ is a monomorphism. Therefore R/J is semisimple.
(3) \Rightarrow (1) If R is a semilocal, right mininjective and right CF-ring, then R is quasi-Frobenius by [9, Theorem 8.11].

Lemma 2.8. Assume that R is a right simple injective ring, $M \neq \oplus n R$ and $M_R \neq R_R$. If M is a finitely generated right R-module then M is semisimple.

Proof. Let $M = m_1R + m_2R + \cdots + m_nR$ be a finitely generated R-module and F be a free R-module. Then we have the epimorphism $g : F \cong \oplus n R \rightarrow M \cong \oplus n R/\text{Ker}(f)$ defined by $f(x_i) = \sum_{i=1}^n m_i(x_i)$ where $f : F \rightarrow M$ is an epimorphism. Since R is a right simple injective ring, there exists $h : \oplus n R \rightarrow \oplus n a_i R$. Then $\oplus n a_i R$ is semisimple and $\text{Ker}(h) \subseteq \text{Ker}(g)$. Since $\oplus n a_i R$ is semisimple and $\alpha : \oplus n a_i R \rightarrow M$ is an epimorphism, we can say that M is semisimple.

Theorem 2.9. Assume that R is a right (left) self-
injective ring, $M \neq \bigoplus_{n} R$ and $M_{R} \neq R_{R}$. Then,

1. Every finitely generated right (left) R-module is a right (left) Artinian and right (left) Noetherian module of finite length.

2. Every finitely generated right R-module is injective and projective.

Proof. (1) By Lemma 2.8.
(2) Let R be a right self-injective ring and M be a finitely generated R-module. By Lemma 2.8, M is semisimple. This implies that every submodule of M is a direct summand.

Corollary 2.10. Assume that R is a right perfect and two sided self injective ring such that $\text{Soc}(eR) \neq 0$ for every local idempotent e of R. Let $M \neq \bigoplus_{n} R$ and $M_{R} \neq R_{R}$. Then is a QF-ring.

Proof. By [9, Theorem 6.16], R is right and left Kasch ring. By Theorems 6.19 and 6.20 in [9], the ring R is finitely cogenerated. Now, by Theorem 2.9, R is left Artinian. This implies that R is a QF-ring.

3. REFERENCES

